Fully Isotropic Four-Degrees-of-Freedom Parallel Mechanisms for Schoenflies Motion

نویسنده

  • Marco Carricato
چکیده

This paper presents a novel family of fully isotropic parallel mechanisms whose output link is provided with Schoenflies motion, i.e., it can freely translate in space and rotate about a fixed direction. A methodology is proposed that makes use of the theory of screws to synthesize desired forms for both the direct and the inverse Jacobian matrices. In particular, these are made diagonal and constant throughout the workspace. Motors are mounted one per leg and each one of them actuates one of the degrees of freedom of the output body through a constant one-to-one velocity relation. As a consequence, motors may apply, with equal ease, a twist or a wrench of any amplitude (within the motor operation range) to the end-effector around any screw congruous with the admitted motion, so that full isotropy is achieved. Kinematic analysis is trivial and no computation is required for real-time control. Furthermore, actuator motion ranges can be easily related to the theoretical workspace dimensions and the problem of link interference is potentially simplified. KEY WORDS—parallel mechanisms, Schoenflies motion, theory of screws, decoupled motion, full isotropy, kinematic singularities

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Matrix Method to Compute the Degrees of Freedom of Mechanisms

In this paper, some definitions and traditional formulas for calculating the mobility of mechanisms are represented, e.g. Grubler formula, Somov - Malyshev formula, and Buchsbaum - Freudenstei. It is discussed that there are certain cases in which they are too ambiguous and incorrect to use. However, a matrix method is suggested based on the rank of the Jacobian of the mechanism and its applica...

متن کامل

Design and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator

This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...

متن کامل

Singularity-Free Fully-Isotropic Translational Parallel Mechanisms

Parallel mechanisms show desirable characteristics such as a large payload to robot weight ratio, considerable stiffness, low inertia and high dynamic performances. In particular, parallel manipulators with fewer than six degrees of freedom have recently attracted researchers’ attention, as their employ may prove valuable in those applications in which a higher mobility is uncalled-for. The att...

متن کامل

Conceptual design of Schoenflies motion generators based on the wrench graph

The subject of this paper is about the conceptual design of parallel Schoenflies motion generators based on the wrench graph. By using screw theory and Grassmann geometry, some conditions on both the constraint and the actuation wrench systems are generated for the assembly of limbs of parallel Schoenflies motion generators, i.e., 3T1R parallel manipulators. Those conditions are somehow related...

متن کامل

An Efficient Strain Based Cylindrical Shell Finite Element

The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2005